This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674
STRUCTURAL STUDIES OF THE COPPER(II) ACETATE COMPLEXES $\mathrm{Cu}\left(\mathrm{o}_{2} \mathrm{CCH}_{3}\right)_{2}$ (pyridine) $)_{3} \mathrm{AND} \mathrm{Cu}_{6}\left(\mu-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(\mu_{4}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{6}$
William J. Evans ${ }^{\text {a }}$; John H. Hain Jr., Randy N. R. Broomhall-Dillard ${ }^{\text {a }}$; Joseph W. Ziller ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, University of California, Irvine, CA, USA

To cite this Article Evans, William J. , Hain Jr., John H., Broomhall-Dillard, Randy N. R. and Ziller, Joseph W.(1999) 'STRUCTURAL STUDIES OF THE COPPER(II) ACETATE COMPLEXES Cu $\left.\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}(\text { pyridine })_{3}$ AND Cu $\mathrm{C}_{6}(\mu-$ $\left.\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(\mu_{4}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{6}$ ', Journal of Coordination Chemistry, 47: 2, 199-209
To link to this Article: DOI: 10.1080/00958979908023054
URL: http://dx.doi.org/10.1080/00958979908023054

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

STRUCTURAL STUDIES OF THE COPPER(II) ACETATE COMPLEXES $\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}$ (pyridine) $)_{3}$ AND $\mathrm{Cu}_{6}\left(\mu-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(\mu_{4}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{6}$

WILLIAM J. EVANS*, JOHN H. HAIN, Jr., RANDY N.R. BROOMHALL-DILLARD and JOSEPH W. ZILLER

Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
(Received 3 Fehruary 1998; Revised 2 April 1998; In final form 25 June 1998)

Abstract

$\left[\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\right]_{2}$, 1, reacts with pyridine to form violet-blue $\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}$ (pyridine $)_{3}, \mathbf{2}$, in $>90 \%$ yield. 2 crystallizes from pyridine with a distorted square-pyramidal geometry around copper with the monodentate acetate ligands located diagonally in the basal positions. 1 reacts with $\mathrm{Bi}\left(\mathrm{OCMe}_{3}\right)_{3}$ in THF to form blue $\mathrm{Cu}_{6}\left(\mu-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(\mu_{4}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{6}, 3$. 3 crystallizes from THF/hexanes with a hexagon of copper atoms linked by six doubly-bridging tert-butoxide ligands, four doubly-bridging bidentate acetates, and two quadruply-bridging bidentate acetate ligands.

Keywords: Copper(II); square-pyramidal; acetate; hexacopper; alkoxide

INTRODUCTION

A synthetic challenge in inorganic chemistry is to synthesize molecular complexes containing specific combinations of different metals. ${ }^{1-4}$ These complexes have the potential to be precursors to a wide variety of mixed-metal materials of great practical importance. The discovery that copper-containing mixed-metal oxides such as $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-x}$ are superconducting at temperatures above $90 \mathrm{~K}^{5-7}$ has stimulated considerable

[^0]interest in developing new methods to introduce copper into heteropolymetallic systems. We report here the synthesis and structure of two copper acetate complexes that may be of interest in this regard. Both arise directly from a readily available copper(II) precursor $\left[\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\right]_{2}, \mathbf{1}$, and both have ligands suitable for bridging to other metals. The chemistry of one of these systems was reported earlier but no structural data were included. ${ }^{8}$

EXPERIMENTAL

The chemistry described below was performed under nitrogen with rigorous exclusion of air and water using standard Schlenk, vacuum line and glove box techniques. Anhydrous $\left[\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\right]_{2}$, was obtained from Alfa and used without purification. $\mathrm{Cu}_{6}\left(\mu-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(\mu_{4}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{6}, 3$, was prepared as previously described. ${ }^{8}$ Pyridine (Aldrich) was dried and distilled from CaH_{2}. THF was dried and degassed as previously described. ${ }^{9}$ Infrared spectra were obtained on a Perkin Elmer 1600 FT-IR spectrometer. Elemental analyses were done by Analytische Laboratorien, D-51779 Lindlar, Germany.

$\mathbf{C u}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}$ (pyridine) $\mathbf{3}_{\mathbf{3}}, \mathbf{2}$

On a Schlenk line, pyridine (50 mL) was added via cannula to dark bluegreen $\left[\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\right]_{2}, 1(1.00 \mathrm{~g}, 2.8 \mathrm{mmol})$. The suspension was stirred for 20 min producing a violet-blue colored solution and small violet-blue crystals. The solvent was removed in vacuo yielding violet-blue $\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}$ (pyridine) $)_{3}, 2(1.09 \mathrm{~g}, 93 \%)$, which was identified by X-ray crystallography. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Cu}: \mathrm{C}, 41.45 ; \mathrm{H}, 4.26 ; \mathrm{N}, 5.37 ; \mathrm{Cu}, 24.37$. Found: C, 41.62; H, 4.17; N, 5.32; Cu, 24.20. IR (KBr): 3068(w), 2964(w), 2923(w), 1740(w), 1623(s), 1442(s), 1323(w), 1256(w), 1215(m), 1149(w), 1072(w), 1036(m), 1010(m), 763(w), 704(m), 682(m), 626(w) cm^{-1}.

X-ray Data Collection, Structure Determination, and Refinement for $\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}$ (pyridine) $)_{3}, 2$

A violet-blue crystal of approximate dimensions $0.20 \times 0.20 \times 0.32 \mathrm{~mm}$ was mounted on a glass fiber and transferred to the Siemens R3m/V diffractometer which is equipped with a modified LT-1 apparatus. The
determination of Laue symmetry, crystal class, unit cell parameters and the crystal's orientation matrix were carried out according to standard procedures similar to Churchill. ${ }^{10}$ Intensity data were collected at 183 K using a $\theta-2 \theta$ scan technique with MoK α radiation under the conditions described in Table I. All 1345 data were corrected for absorption and for Lorentz and polarization effects and were placed on an approximately absolute scale. The diffraction symmetry was $2 / \mathrm{m}$ with systematic absences $h k l$ for $h+k=2 n+1$. The centrosymmetric monoclinic space group $\mathrm{C} 2 / \mathrm{c}$ was later determined to be correct.

All crystallographic calculations were carried out using either our locally modified version of the UCLA Crystallographic Computing Package ${ }^{11}$ or the SHELXTL PLUS program set. ${ }^{12}$ The analytical scattering factors for

TABLE I Experimental data for the X-ray diffraction study for $\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}$ (pyridine $)_{3}$, 2, and $\mathrm{Cu}_{6}\left(\mu-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(\mu_{4}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{6}, 3$

Compound	2	3
Formula	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Cu}$	$\mathrm{C}_{36} \mathrm{H}_{72} \mathrm{O}_{18} \mathrm{Cu}_{6}$
Fw	418.9	1174.2
Temperature (K)	183	183
Crystal system	monoclinic	monoclinic
Space group	C2/c	P2/n
$a\left(\right.$ (${ }_{\text {® }}$)	12.658(2)	13.149(2)
b (A)	$9.8146(16)$	$9.7566(15)$
$c(\AA)$	16.055(3)	19.535(3)
β (deg)	105.234(12)	90.580(11)
$V\left(\mathrm{~A}^{3}\right)$	1924.5(5)	2506.0(6)
Z	4	2
$D_{\text {calcd }}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.446	1.556
Diffractometer	Siemens R3m/V	Syntex P2 ${ }_{1}$
Data collected	$+h,+k, \pm l$	$+h,+k, \pm l$
Index ranges	$0 \leq h \leq 13$,	$0 \leq h \leq 14$,
	$0 \leq k \leq 10$,	$0 \leq k \leq 10$,
	$-17 \leq 1 \leq 16$	$-21 \leq l \leq 21$
Scan type	$\theta-2 \theta$	$\theta-2 \theta$
Scan width, in ω	$1.2{ }^{\circ}$	$1.2{ }^{\circ}$
Scan speed, in ω (deg $\min ^{-1}$)	2.0	3.0
2θ range (deg)	4.0-45.0	4.0-45.0
$\mu(\mathrm{MoK} \alpha)\left(\mathrm{mm}^{-1}\right)$	1.164	2.57
Reflections collected	1345	3468
Independent reflections ($\left\|F_{0}\right\|>0$)	1220	3027
No. of variables	124	272
Refinement	$\begin{aligned} & R_{F}=3.4 \% ; \mathrm{R}_{w F}=3.8 \% \\ & \text { for data }\left\|F_{0}\right\|>3.0 \sigma\left\|F_{0}\right\| \end{aligned}$	$\begin{aligned} & R_{F}=3.4 \% ; R_{w F}=5.1 \% \\ & \text { for data }\left\|F_{0}\right\|>6.0 \sigma\left\|F_{0}\right\| \end{aligned}$
Refinement (all data)	$R_{F}=4.0 \% ; \mathrm{R}_{w F}=4.5 \%$	$R_{F}=5.2 \% ; \mathrm{R}_{\text {w, }}=6.1 \%$
Goodness of fit	1.64	1.01

Radiation: MoK $\alpha(\lambda=0.710730 \AA)$; Monochromator: highly oriented graphite; Absorption correction: semi-empirical (ψ-scan method); $R_{F}=\left[\sum\left\|F_{0}\left|-\left|F_{\mathrm{c}} \| / \sum\right| F_{0}\right|\right] ; R_{\mathrm{w} F}=\left[\sum w\left(| | F_{0}\left|-\left|F_{\mathrm{c}}\right|\right|\right) / \sum w\left|F_{0}\right|\right]\right.$.
neutral atoms were used throughout the analysis, ${ }^{13}$ both the real $\left(\Delta f^{\prime}\right)$ and imaginary ($i \Delta f^{\prime \prime}$) components of anomalous dispersion were included. The quantity minimized during least-squares analysis was $\sum w\left(F_{0}-F_{\mathrm{c}}\right)^{2}$ where $w^{-1}=\sigma^{2}(F)+0.0020 F^{2}$.
The structure was solved by direct methods and refined by fullmatrix least-squares techniques. Hydrogen atoms were included using a riding model with $d(\mathrm{C}-\mathrm{H})=0.96 \AA$ and $U($ iso $)=0.08 \AA^{2}$. The molecule is located on a two-fold rotation axis. Refinement of positional and thermal parameters led to convergence with $R_{F}=3.4 \% ; R_{w F}=3.8 \%$ and $\mathrm{GOF}=1.64$ for 124 variables refined against those 1123 data with $F>3.0 \sigma(F)$. A final difference-Fourier synthesis yielded $\rho(\max)=$ $0.25 \mathrm{e}^{-3}$.

X-ray Data Collection, Structure Determination, and Refinement for $\mathrm{Cu}_{6}\left(\mu-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(\mu_{4}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{6}, 3$

A bright blue crystal of approximate dimensions $0.18 \times 0.20 \times 0.22 \mathrm{~mm}$ was handled at 183 K on a Syntex P2 diffractometer as described for 2. Details appear in Table I. All 3468 data were corrected for the effects of absorption and for Lorentz and polarization effects and placed on an approximately absolute scale by means of a Wilson plot. Any reflection with I (net) <0 was assigned the value $\left|F_{0}\right|=0$. A careful examination of a preliminary data set revealed the systematic extinctions $0 k 0$ for $k=2 n+1$ and $h 0 l$ for $h+1=2 n+1$; the diffraction symmetry was $2 / \mathrm{m}$. The centrosymmetric monoclinic space group $\mathrm{P} 2_{1} / \mathrm{n}$, a non-standard setting of $\mathrm{P} 2_{1} / \mathrm{c}\left[\mathrm{C}_{2 \mathrm{~h}}^{5}\right.$; No. 14], is thus uniquely defined.

All crystallographic calculations were carried out as for 2 . The quantity minimized during least-squares analysis was $\sum w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ where $w^{-1}=$ $\sigma^{2}\left(\left|F_{0}\right|\right)+0.0020\left(\left|F_{0}\right|\right)^{2}$. The structure was solved by direct methods (SHELXTL PLUS); and refined by full-matrix least-squares techniques. The molecule lies on an inversion center. Hydrogen atom contributions were included using a riding model with $d(\mathrm{C}-\mathrm{H})=0.96 \AA$ and $U($ iso $)=$ $0.08 \AA^{2}$. Refinement of positional and anisotropic thermal parameters led to convergence with $R_{F}=5.2 \%, R_{w F}=6.1 \%$ and $\mathrm{GOF}=1.01$ for 272 variables refined against all 3027 unique data, $\left(R_{F}=3.4 \% ; R_{w F}=5.1 \%\right.$ for those 2370 data with $\left.\left|F_{0}\right|>6.0 \sigma\left(\left|F_{0}\right|\right)\right)$. A final difference-Fourier map was devoid of significant features, $\rho(\max)=0.49 \mathrm{eA}^{-3}$. The details of the structures of 2 and $\mathbf{3}$ are given in Tables II-V.

TABLE II Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement coefficients $\left(\AA^{2} \times 10^{4}\right)$ for $\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}$ (pyridine $)_{3}, 2$

	x	y	z	$U(\mathrm{eq})^{*}$
$\mathrm{Cu}(1)$	5000	$2404(1)$	2500	$254(2)$
$\mathrm{O}(1)$	$6483(2)$	$2475(2)$	$3260(1)$	$309(8)$
$\mathrm{O}(2)$	$6487(2)$	$207(3)$	$3312(2)$	$446(11)$
$\mathrm{N}(1)$	$4420(2)$	$2050(3)$	$3558(2)$	$272(10)$
$\mathrm{N}(2)$	5000	$4745(4)$	2500	$283(14)$
$\mathrm{C}(1)$	$4523(3)$	$2980(4)$	$4180(2)$	$393(14)$
$\mathrm{C}(2)$	$4189(3)$	$2760(4)$	$4918(2)$	$432(14)$
$\mathrm{C}(3)$	$3738(3)$	$1536(4)$	$5038(2)$	$405(15)$
$\mathrm{C}(4)$	$3638(3)$	$577(4)$	$4404(3)$	$501(17)$
$\mathrm{C}(5)$	$3977(3)$	$863(4)$	$3676(2)$	$428(15)$
$\mathrm{C}(6)$	$5939(3)$	$5455(3)$	$2738(2)$	$369(14)$
$\mathrm{C}(7)$	$5968(3)$	$6864(4)$	$2741(2)$	$429(15)$
$\mathrm{C}(8)$	5000	$7575(5)$	2500	$432(21)$
$\mathrm{C}(9)$	$6912(3)$	$1320(4)$	$3531(2)$	$328(14)$
$\mathrm{C}(10)$	$8024(3)$	$1399(4)$	$4177(2)$	$479(16)$

*Equivalent isotropic U defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

TABLE III Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement coefficients $\left(\AA^{2} \times 10^{4}\right)$ for $\mathrm{Cu}_{6}\left(\mu-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(\mu 4-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{6}, 3$

	x	y	z	$U(\mathrm{eq})^{*}$
$\mathrm{Cu}(1)$	$7017.6(.5)$	$377.1(.7)$	$5420.0(.3)$	$233(3)$
$\mathrm{Cu}(2)$	$5552.6(.5)$	$-737.0(8)$	$6439.1 .3)$	$230(3)$
$\mathrm{Cu}(3)$	$3341.8(.5)$	$1245.3(.8)$	$6074.9(.3)$	$239(3)$
$\mathrm{O}(1)$	$5615(3)$	$1002(4)$	$5899(2)$	$227(13)$
$\mathrm{O}(2)$	$6965(3)$	$-697(4)$	$6236(2)$	$242(13)$
$\mathrm{O}(3)$	$8079(3)$	$-655(4)$	$4948(2)$	$290(14)$
$\mathrm{O}(4)$	$7073(3)$	$1914(4)$	$4822(2)$	$252(13)$
$\mathrm{O}(5)$	$4218(3)$	$-435(4)$	$6763(2)$	$293(14)$
$\mathrm{O}(6)$	$5844(3)$	$-406(5)$	$4598(2)$	$293(15)$
$\mathrm{O}(7)$	$5465(3)$	$-2672(5)$	$6648(2)$	$376(16)$
$\mathrm{O}(8)$	$3849(3)$	$-3045(4)$	$6353(2)$	$355(15)$
$\mathrm{O}(9)$	$2236(3)$	$92(5)$	$6146(2)$	$312(14)$
$\mathrm{C}(1)$	$7804(5)$	$2975(7)$	$4972(3)$	$347(22)$
$\mathrm{C}(2)$	$8103(6)$	$2857(7)$	$5725(3)$	$408(24)$
$\mathrm{C}(3)$	$8745(6)$	$2771(9)$	$4530(4)$	$625(33)$
$\mathrm{C}(4)$	$7338(7)$	$4381(7)$	$4839(4)$	$568(30)$
$\mathrm{C}(5)$	$4006(5)$	$181(6)$	$7407(3)$	$272(20)$
$\mathrm{C}(6)$	$4913(5)$	$-67(8)$	$7881(3)$	$429(25)$
$\mathrm{C}(7)$	$3075(6)$	$-430(9)$	$7698(3)$	$512(29)$
$\mathrm{C}(8)$	$3883(8)$	$1697(7)$	$7291(4)$	$615(32)$
$\mathrm{C}(9)$	$4676(5)$	$-3400(7)$	$6615(3)$	$300(22)$
$\mathrm{C}(10)$	$4748(6)$	$-4811(7)$	$6901(4)$	$438(25)$
$\mathrm{C}(11)$	$7770(5)$	$-1534(7)$	$6552(3)$	$291(21)$
$\mathrm{C}(12)$	$8762(5)$	$-754(8)$	$6483(3)$	$383(23)$
$\mathrm{C}(13)$	$7525(6)$	$-1699(8)$	$7301(3)$	$431(25)$
$\mathrm{C}(14)$	$7812(6)$	$-2915(7)$	$6197(3)$	$415(25)$
$\mathrm{C}(15)$	$8224(5)$	$-723(7)$	$4317(3)$	$285(21)$
$\mathrm{C}(16)$	$9042(6)$	$-1729(8)$	$4098(4)$	$465(26)$
$\mathrm{C}(17)$	$4810(5)$	$1273(7)$	$5524(3)$	$274(21)$
$\mathrm{C}(18)$	$4713(6)$	$2679(7)$	$5259(3)$	$388(23)$

[^1]TABLE IV Interatomic distances $(\AA \AA)$ and angles (Deg.) for $\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}$ (pyridine) $)_{3}, 2$

$\mathrm{Cu}(1)-\mathrm{O}(1)$	$1.952(2)$	$\mathrm{Cu}(1)-\mathrm{N}(1)$	$2.049(3)$
$\mathrm{Cu}(1)-\mathrm{N}(2)$	$2.298(4)$	$\mathrm{Cu}(1) \cdots \mathrm{O}(2)$	2.933
$\mathrm{O}(1)-\mathrm{C}(9)$	$\mathrm{O}(2)-\mathrm{C}(9)$	$1.227(4)$	
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.283(4)$	$\mathrm{N}(1)-\mathrm{C}(5)$	$1.327(5)$
$\mathrm{N}(2)-\mathrm{C}(6)$	$1.334(4)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.376(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.344(4)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.368(5)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.365(5)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.383(5)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.376(6)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.516(5)$
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{N}(1)$	$1.374(5)$	$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{N}(2)$	$88.0(1)$
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(2)$	$89.1(1)$	$99.8(1)$	$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{O}\left(1^{\prime}\right)$
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{O}\left(1^{\prime}\right)$	$91.6(1)$	$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{N}\left(1^{\prime}\right)$	$175.9(1)$
$\mathrm{O}(1)-\mathrm{Cu}(1) \cdots \mathrm{O}(2)$	$160.4(2)$		
$\mathrm{N}(1)-\mathrm{Cu}(1) \cdots \mathrm{O}(2)$	49.4	$\mathrm{~N}(1)-\mathrm{Cu}(1) \cdots \mathrm{O}\left(2^{\prime}\right)$	134.7
$\mathrm{~N}(2)-\mathrm{Cu}(1) \cdots \mathrm{O}(2)$	80.5	$\mathrm{O}(2) \cdot \mathrm{Cu}(1) \cdot \mathrm{O}\left(2^{\prime}\right)$	85.1
$\mathrm{Cu}(1)-\mathrm{O}(1)-\mathrm{C}(9)$	137.3	$\mathrm{Cu}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	85.4
$\mathrm{Cu}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	$115.6(2)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	$121.2(2)$
$\mathrm{Cu}(1)-\mathrm{N}(2)-\mathrm{C}(6)$	$121.6(2)$	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}\left(6^{\prime}\right)$	$117.1(3)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$12.3(2)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$119.5(4)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$123.1(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120.2(4)$
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$117.4(4)$	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$122.7(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$122.6(3)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}\left(7^{\prime}\right)$	$118.9(5)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{O}(2)$	$119.1(4)$	$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	$114.9(3)$
$\mathrm{O}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	$125.1(3)$		

TABLE V Interatomic distances (\AA) and Angles (Deg.) for $\mathrm{Cu}_{6}\left(\mu-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}$ $\left(\mu_{4}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{6}, 3$

$\mathrm{Cu}(1)-\mathrm{Cu}(2)$	2.989	$\mathrm{Cu}(2) \cdot \mathrm{Cu}(3)$	3.027	$\mathrm{Cu}(1) \cdots \mathrm{Cu}\left(3^{\prime}\right)$	3.073
$\mathrm{Cu}(1)-\mathrm{O}(1)$	$2.164(4)$	$\mathrm{Cu}(1)-\mathrm{O}(2)$	$1.910(4)$	$\mathrm{Cu}(1)-\mathrm{O}(3)$	$1.959(4)$
$\mathrm{Cu}(1)-\mathrm{O}(4)$	$1.903(4)$	$\mathrm{Cu}(1)-\mathrm{O}(6)$	$2.344(4)$	$\mathrm{Cu}(2)-\mathrm{O}(1)$	$2.001(4)$
$\mathrm{Cu}(2)-\mathrm{O}(2)$	$1.904(4)$	$\mathrm{Cu}(2)-\mathrm{O}(5)$	$1.895(4)$	$\mathrm{Cu}(2)-\mathrm{O}(7)$	$1.935(5)$
$\mathrm{Cu}(3)-\mathrm{O}(5)$	$1.930(4)$	$\mathrm{Cu}(3)-\mathrm{O}(8)$	$1.954(4)$	$\mathrm{Cu}(3)-\mathrm{O}(9)$	$1.960(4)$
$\mathrm{Cu}(3)-\mathrm{O}\left(4^{\prime}\right)$	$1.942(4)$	$\mathrm{Cu}(3)-\mathrm{O}\left(6^{\prime}\right)$	$2.345(4)$	$\mathrm{O}(3)-\mathrm{C}(15)$	$1.252(7)$
$\mathrm{O}(1)-\mathrm{C}(17)$	$1.308(7)$	$\mathrm{O}(2)-\mathrm{C}(11)$	$1.468(7)$		
$\mathrm{O}(4)-\mathrm{C}(1)$	$1.441(8)$	$\mathrm{O}(5)-\mathrm{C}(5)$	$1.425(7)$	$\mathrm{O}(6)-\mathrm{C}\left(17^{\prime}\right)$	$1.228(8)$
$\mathrm{O}(7)-\mathrm{C}(9)$	$1.259(8)$	$\mathrm{O}(8)-\mathrm{C}(9)$	$1.246(8)$	$\mathrm{O}(9)-\mathrm{C}\left(15^{\prime}\right)$	$1.245(7)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.523(9)$	$\mathrm{C}(1)-\mathrm{C}(3)$	$1.529(11)$	$\mathrm{C}(1)-\mathrm{C}(4)$	$1.524(10)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.521(9)$	$\mathrm{C}(5)-\mathrm{C}(7)$	$1.481(10)$	$\mathrm{C}(5)-\mathrm{C}(8)$	$1.504(10)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.488(9)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.518(9)$	$\mathrm{C}(11)-\mathrm{C}(13)$	$1.510(9)$
$\mathrm{C}(11)-\mathrm{C}(14)$	$1.517(9)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.520(10)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.472(9)$
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(2)$		$75.9(2)$	$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(3)$	$164.3(2)$	
$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{O}(3)$	$98.2(2)$	$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(4)$	$94.7(2)$		
$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{O}(4)$	$161.3(2)$	$\mathrm{O}(3)-\mathrm{Cu}(1)-\mathrm{O}(4)$	$94.8(2)$		
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(6)$	$80.2(1)$	$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{O}(6)$	$111.3(2)$		
$\mathrm{O}(3)-\mathrm{Cu}(1)-\mathrm{O}(6)$	$88.7(2)$	$\mathrm{O}(4)-\mathrm{Cu}(1)-\mathrm{O}(6)$	$82.2(2)$		
$\mathrm{O}(1)-\mathrm{Cu}(2)-\mathrm{O}(2)$	$80.1(2)$	$\mathrm{O}(1)-\mathrm{Cu}(2)-\mathrm{O}(5)$	$95.0(2)$		
$\mathrm{O}(2)-\mathrm{Cu}(2)-\mathrm{O}(5)$	$167.3(2)$	$\mathrm{O}(1)-\mathrm{Cu}(2)-\mathrm{O}(7)$	$160.3(2)$		
$\mathrm{O}(2)-\mathrm{Cu}(2)-\mathrm{O}(7)$	$97.1(2)$	$\mathrm{O}(5)-\mathrm{Cu}(2)-\mathrm{O}(7)$	$91.4(2)$		
$\mathrm{O}(\mathrm{S})-\mathrm{Cu}(3)-\mathrm{O}(8)$	$88.6(2)$	$\mathrm{O}(5)-\mathrm{Cu}(3)-\mathrm{O}(9)$	$96.6(2)$		
$\mathrm{O}(8)-\mathrm{Cu}(3)-\mathrm{O}(9)$	$146.1(2)$	$\mathrm{O}(5)-\mathrm{Cu}(3)-\mathrm{O}\left(4^{\prime}\right)$	$157.8(2)$		
$\mathrm{O}(8)-\mathrm{Cu}(3)-\mathrm{O}\left(4^{\prime}\right)$	$98.3(2)$	$\mathrm{O}(9)-\mathrm{Cu}(3)-\mathrm{O}\left(4^{\prime}\right)$	$94.9(2)$		
$\mathrm{O}(\mathrm{S})-\mathrm{Cu}(3)-\mathrm{O}\left(6^{\prime}\right)$	$80.6(2)$	$\mathrm{O}(8)-\mathrm{Cu}(3)-\mathrm{O}\left(6^{\prime}\right)$	$128.1(2)$		
$\mathrm{O}(9)-\mathrm{Cu}(3)-\mathrm{O}(6)$	$85.7(2)$	$\mathrm{O}\left(4^{\prime}\right)-\mathrm{Cu}(3)-\mathrm{O}\left(6^{\prime}\right)$	$81.4(2)$		

TABLE V (Continued)

$\mathrm{Cu}(1)-\mathrm{O}(1)-\mathrm{Cu}(2)$	$91.6(2)$	$\mathrm{Cu}(1)-\mathrm{O}(1)-\mathrm{C}(17)$	$120.2(3)$
$\mathrm{Cu}(2)-\mathrm{O}(1)-\mathrm{C}(17)$	$115.4(4)$	$\mathrm{Cu}(1)-\mathrm{O}(2)-\mathrm{Cu}(2)$	$103.2(2)$
$\mathrm{Cu}(1)-\mathrm{O}(2)-\mathrm{C}(11)$	$128.7(3)$	$\mathrm{Cu}(2)-\mathrm{O}(2)-\mathrm{C}(11)$	$127.0(3)$
$\mathrm{Cu}(1)-\mathrm{O}(3)-\mathrm{C}(15)$	$127.4(4)$	$\mathrm{Cu}(1)-\mathrm{O}(4)-\mathrm{C}(1)$	$118.1(3)$
$\mathrm{Cu}(1)-\mathrm{O}(4)-\mathrm{Cu}\left(3^{\prime}\right)$	$106.1(2)$	$\mathrm{C}(1)-\mathrm{O}(4)-\mathrm{Cu}\left(3^{\prime}\right)$	$127.3(3)$
$\mathrm{Cu}(2)-\mathrm{O}(5)-\mathrm{Cu}(3)$	$104.6(2)$	$\mathrm{Cu}(2)-\mathrm{O}(5)-\mathrm{C}(5)$	$123.4(4)$
$\mathrm{Cu}(3)-\mathrm{O}(\mathrm{S})-\mathrm{C}(\mathrm{S})$	$131.9(4)$	$\mathrm{Cu}(1)-\mathrm{O}(6)-\mathrm{Cu}\left(3^{\prime}\right)$	$81.9(1)$
$\mathrm{Cu}(1)-\mathrm{O}(6)-\mathrm{C}\left(17^{\prime}\right)$	$144.3(4)$	$\mathrm{Cu}\left(3^{\prime}\right)-\mathrm{O}(6)-\mathrm{C}\left(17^{\prime}\right)$	$133.5(4)$
$\mathrm{Cu}(2)-\mathrm{O}(7)-\mathrm{C}(9)$	$126.24)$	$\mathrm{Cu}(3)-\mathrm{O}(8)-\mathrm{C}(9)$	$131.2(4)$
$\mathrm{Cu}(3)-\mathrm{O}(9)-\mathrm{C}\left(15^{\prime}\right)$	$129.3(4)$		
$\mathrm{O}(4)-\mathrm{C}(1)-\mathrm{C}(2)$	$108.0(5)$	$\mathrm{O}(4)-\mathrm{C}(1)-\mathrm{C}(3)$	$109.5(6)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	$109.4(6)$	$\mathrm{O}(4)-\mathrm{C}(1)-\mathrm{C}(4)$	$110.2(6)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(4)$	$109.4(6)$	$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(4)$	$110.3(6)$
$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(6)$	$108.2(5)$	$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(7)$	$109.8(5)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(7)$	$110.3(5)$	$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(8)$	$107.7(5)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(8)$	$109.3(6)$	$\mathrm{C}(7)-\mathrm{C}(5)-\mathrm{C}(8)$	$111.4(6)$
$\mathrm{O}(7)-\mathrm{C}(9)-\mathrm{O}(8)$	$125.4(6)$	$\mathrm{O}(7)-\mathrm{C}(9)-\mathrm{C}(10)$	$117.0(6)$
$\mathrm{O}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$117.6(6)$	$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	$107.5(5)$
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(13)$	$107.9(5)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	$109.4(5)$
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(14)$	$109.3(5)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(14)$	$111.7(5)$
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(14)$	$111.0(6)$	$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(16)$	$115.3(6)$
$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{O}\left(9^{\prime}\right)$	$127.7(6)$	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{O}\left(9^{\prime}\right)$	$117.0(6)$
$\mathrm{O}(1)-\mathrm{C}(17)-\mathrm{C}(18)$	$116.9(6)$	$\mathrm{O}(1)-\mathrm{C}(17)-\mathrm{O}\left(6^{\prime}\right)$	$122.1(6)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{O}\left(6^{\prime}\right)$	$121.0(6)$		

RESULTS AND DISCUSSION

$\mathbf{C u}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}$ (pyridine) $)_{3}, \mathbf{2}$

Copper acetate dissolves in pyridine to form a violet-blue solution. $\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}$ (pyridine $)_{3}$, 2 , can be isolated in greater than 90% yield as violet-blue crystals by recrystallization from pyridine and was characterized by elemental analysis, infrared spectrocopy, and X-ray diffraction. Monometallic 2 contrasts with the bimetallic monopyridine copper acetate complexes $\left[\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2} \text { (pyridine) }\right]_{2}, 4,{ }^{14,15}$ whose structures were reported without any preparative details as dark green crystals in both monoclinic and orthorhombic space groups. ${ }^{14,15}$ Loss of two pyridine ligands per copper atom in 2 could generate the bimetallic complexes 4.

The structure of 2 , which has molecular $\mathrm{C}_{2 \mathrm{v}}$ symmetry, is shown in Figure 1. The copper atom is in a square-pyramidal coordination environment, which is common for five-coordinate $\mathrm{Cu}(\mathrm{II}) .{ }^{16}$ The two acetate ligands occupy trans basal positions as monodentate ligands. The squarepyramidal structure in $\mathbf{2}$ is similar to that in $\left[\mathrm{Cu}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}^{\mathrm{i}} \mathrm{Pr}\right)\right.$ $\left.\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\right]_{4},{ }^{17} \mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{OC}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3},{ }^{18}$ and $\mathrm{CuCl}\left(\mathrm{PhCO}_{2}\right)(\mathrm{pyr}-$ idine) $)_{2},{ }^{19}$ and to both the orthorhombic and monoclinic forms of $4 .{ }^{14,15}$ The (donor atom)- Cu -(donor atom) angle for the atoms in the trans basal

FIGURE 1 Thermal ellipsoid plot of $\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}(\text { pyridine })_{3}$, 2, drawn at the 40% probability level.
positions is larger for the acetates, $175.9(1)^{\circ}$, than for the pyridines, $160.4(2)^{\circ}$. Correspondingly, the $88.0(1)^{\circ} \mathrm{N}(2)-\mathrm{Cu}-\mathrm{O}(1)$ angle is smaller than the $99.8(1)^{\circ} \mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(1)$ angle.

As is typical with square-pyramidal $\mathrm{Cu}(\mathrm{II})$ complexes, the axial $\mathrm{Cu}(1)-$ $\mathrm{N}(2)$ distance in $2,2.298(4) \AA$, is significantly larger than the $\mathrm{Cu}(1)-\mathrm{N}(1)$ basal distance, $2.049(3) \AA \AA^{16,20}$ The axial $\mathrm{Cu}(1)-\mathrm{N}(2)$ distance in 2 is also significantly larger than the distances of $2.186(8)$ and $2.126(4) \AA$ found in the orthorhombic and monoclinic forms of 4 , respectively. ${ }^{14,15}$ The $\mathrm{Cu}-\mathrm{O}$ bond distance, $1.952(2) \AA$, is in the $1.955(8)-2.03(1) \AA$ range which is typical for $\mathrm{Cu}(\mathrm{II})$ acetate complexes. ${ }^{17}$ The other oxygen atom of each acetate ligand is not coordinated to copper: the $\mathrm{Cu}(1) \cdots \mathrm{O}(2)$ distance is $2.933 \AA$.

Hence, isolation of crystalline $\mathbf{2}$ before loss of pyridine to form $\mathbf{4}$ provides a monometallic complex with two monohapto acetate groups. This leaves
two pendant oxygen donor atoms which could complex an additional metal. Indeed, in the absence of other reagents, these oxygen atoms apparently displace pyridine from another copper complex to form bimetallic 4.

$\mathrm{Cu}_{6}\left(\mu-\mathrm{O}_{\mathbf{2}} \mathrm{CCH}_{3}\right)_{4}\left(\mu_{\mathbf{4}}-\mathrm{O}_{\mathbf{2}} \mathrm{CCH}_{3}\right)_{\mathbf{2}}\left(\mu-\mathrm{OCMe}_{3}\right)_{\mathbf{6}}, \mathbf{3}$

In an attempt to make a mixed-metal bismuth-copper complex, $\mathrm{Bi}\left(\mathrm{OCMe}_{3}\right)_{3}$ was added to anhydrous $\left[\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{2}\right]_{2}$ in THF. This system proved to be complicated, ${ }^{8}$ but single crystals of the unusual hexametallic copper(II) alkoxide acetate complex, $\mathrm{Cu}_{6}\left(\mu-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(\mu_{4}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}$ $\left(\mu \text { - } \mathrm{OCMe}_{3}\right)_{6}, 3$, shown in Figures 2 and 3, were isolated. Since structural details were not previously reported, they are described here.
The six copper atoms of 3 are planar to within $0.01 \AA$ and form a hexagon with $2.989,3.027$, and $3.073 \AA \mathrm{Cu} \cdots \mathrm{Cu}$ distances. The copper atoms are connected by six doubly-bridging tert-butoxide ligands, four

FIGURE 2 Thermal ellipsoid plot of $\mathrm{Cu}_{6}\left(\mu-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(\mu_{4}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{6}$, 3, drawn at the 40% probability level.

FIGURE 3 The molecular structure of $\mathrm{Cu}_{6}\left(\mu-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\left(\mu_{4}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{6}, 3$.
doubly-bridging bidentate acetate groups, and two quadruply-bridging bidentate acetate ligands. Four of the copper sites are surrounded by five oxygen atoms which have very distorted square-pyramidal geometries $\left[\mathrm{Cu}^{\mathrm{a}}=\mathrm{Cu}(1), \mathrm{Cu}\left(1^{\prime}\right), \mathrm{Cu}(3), \mathrm{Cu}\left(3^{\prime}\right)\right]$. The remaining two copper sites are ligated by four oxygen atoms which have an irregular geometry $\left[\mathrm{Cu}^{\mathrm{b}}=\mathrm{Cu}(2), \mathrm{Cu}\left(2^{\prime}\right)\right]$. Unlike $\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}$ (pyridine) $)_{3}, 2$, all of the oxygen atoms in the acetate ligands in $\mathbf{3}$ are coordinated to copper.

The $\mathrm{Cu}-\mathrm{O}$ bond lengths in 3 are within the range of bonding distances previously reported for $\mathrm{Cu}(\mathrm{II})-\mathrm{O}$ complexes. ${ }^{16,17}$ The $\mathrm{Cu}-\mathrm{O}\left(\mu-\mathrm{OCMe}_{3}\right)$ distances fall in a narrow $1.895(4)-1.942(4) \AA$ range, average $1.914(7) \AA$, and are the shortest $\mathrm{Cu}-\mathrm{O}$ distances in the structure. The doubly-bridging acetates which have only one copper attached to each oxygen atom have a slightly larger $\mathrm{Cu}-\mathrm{O}$ range of $1.935(5)-1.960(4) \AA$ for oxygen atoms $3,7,8$, and 9 . The quadruply-bridging acetates which have two copper atoms attached to each oxygen atom have irregular bond lengths. $O(1)$ is asymmetrically bonded to $\mathrm{Cu}(1)$ and $\mathrm{Cu}(2)$ with $2.164(4)$ and $2.001(4) \AA$ bond distances, respectively. $\mathrm{O}(6)$ has nearly identical bond lengths to $\mathrm{Cu}(1)$, 2.344(4) \AA, and $\mathrm{Cu}(3), 2.345(4) \AA$.

CONCLUSION

Copper(II) acetate is readily converted by pyridine to a monometallic species which can function as a copper-containing chelating ligand via two pendant acetate oxygen atoms. Copper(II) acetate also readily transforms in the presence of tert-butoxide ligands to a hexametallic complex containing extensive acetate and alkoxide bridging in which every oxygen atom coordinates to copper.

Supplementary Material

Figures and tables of crystal data, atomic coordinates, bond distances and angles, anisotropic displacement parameters, and structure factors are available from W.J.E.

Acknowledgment

For support of this research, we thank the Division of Chemical Sciences of the Office of Basic Energy Sciences of the Department of Energy.

References

[1] L.G. Hubert-Pfalzgraf, New J. Chem. 19, 727 (1995).
[2] K.G. Caulton and L.G. Hubert-Pfalzgraf, Chem. Rev. 93, 969 (1993).
[3] D.C. Bradley, Chem. Rev. 89, 1317 (1989).
[4] D.C. Bradley, Polyhedron 13, 1111 (1994).
[5] J.G. Bednorz, K.A. Muller and M. Takashige, Science 236, 73 (1987).
[6] M.B. Maple, Ed., Bull. Mater. Res. Soc. 14, 20 (1989) and references therein.
[7] H.S. Horowitz, S.J. McLain, A.W. Sleight, J.D. Druliner, P.L. Gai, M.J. Vankavelaar, J.L. Wagner, B.D. Biggs and S.J. Poon, Science 243, 66 (1989).
[8] W.J. Evans and J.H. Hain, Jr., Mat. Res. Soc. Symp. Proc. 180, 39 (1990).
[9] W.J. Evans, L.R. Chamberlain, T.A. Ulibarri and J.W. Ziller, J. Am. Chem. Soc. 110, 6423 (1988).
[10] M.R. Churchill, R.A. Lashewycz and F.J. Rotella, Inorg. Chem. 16, 265 (1977).
[11] UCLA Crystallographic Computing Package, University of California Los Angeles, 1981; C. Strouse; personal communication.
[12] Nicolet Instrument Corporation, Madison, WI, 1988.
[13] International Tables for X-Ray Crystallography (Kynoch Press, Birmingham, England, 1974) (a) pp. 99-101; (b) pp. 149-150.
[14] G.A. Barclay and C.H.L. Kennard, J. Chem. Soc. 5244 (1961).
[15] F. Hanic, D. Stempelova and K. Hanicova, Acta Cryst. 17, 633 (1964).
[16] R.J. Doedens, Prog. Inorg. Chem. 21, 209 (1976).
[17] C. Sirio, O. Poncelet, L.G. Hubert-Pfalzgraf, J.C. Daran and J. Vaissermann, Polyhedron 11, 177 (1992).
[18] C.V. Goebel and R.J. Doedens, Inorg. Chem. 10, 2607 (1971).
[19] G. Speier and V. Fülöp, J. Chem. Soc., Chem. Commun. 905 (1990).
[20] J.N. van Niekerk and F.R.L. Schoening, Acta Cryst. 6, 227, (1953).

[^0]: * Corresponding author. E-mail: wevans (a) uci.edu.

[^1]: *Equivalent isotropic \mathbf{U} defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

